What are the different types of cyber threats and attacks?

Oftentimes, cyber criminals gain an advantage by exploiting vulnerabilities in code. As cyber criminals find new ways to access and exploit data, the landscape of cyber threats and vulnerabilities is constantly changing. 

The most commonly used types of cyber attacks, however, include malicious code, manipulation techniques to trick users into providing confidential information, transferring money, and downloading harmful software, and the use of fake emails, text messages, and websites.

Cyber threats and vulnerabilities in 2021

As cyber attacks are becoming more sophisticated and advanced, cyber criminals are using artificial intelligence, cloud technology, and machine learning to make their malicious attacks more effective. Here are some of the top cyber security threats that organisations will face in 2021 and the coming years: 

Cloud vulnerability

With more enterprises leveraging cloud technology to store data about employees, customers, and business operations, this becomes a tempting target for hackers. Tactics such as data breaches, malicious insider threats, DDoS, and exploitation of insecure APIs and interfaces are seen to be some of the top cloud security threats.

AI-enhanced cyber threats

Artificial intelligence can be used to identify and stop cyber attacks—but it can also be used by hackers to perform sophisticated attacks through complex and adaptive malicious software. 

AI fuzzing is one technique where cyber criminals can start, automate and accelerate so-called zero-day attacks: a software security flaw that is known to the vendor but who doesn’t have a patch to fix the flaw, meaning it can be exploited by cyber criminals. 

This works because AI fuzzing integrates artificial intelligence with traditional fuzz testing techniques to create a tool that detects system vulnerabilities. Fuzz testing, also known as “fuzzing”, is an automated software testing technique that involves providing unexpected, invalid, or random data input to a computer program and then monitors the program to look for exceptions such as potential memory leaks, crashes, and so on.

Another type of AI-enhanced cyber threats is machine learning poisoning.

Machine learning poisoning (MI poisoning)

In machine learning poisoning, a hacker targets a machine learning model and injects instructions into it so that the system becomes vulnerable to attacks. Cyber criminals can introduce backdoors, trojans or malicious samples into the machine learning model to poison training sets and compromise the system. 

Smart contract hacking

A smart contract is a contract, or agreement, between two people in the form of computer code. Smart contracts live in decentralised networks, and the transactions that happen in such a contract are processed by the blockchain. This means they can be sent automatically without a third party. 

Smart contracts carry self-executing code which is intended to automatically execute, control, or document legally relevant actions and events that have been set in the contract terms. 

Because smart contracts are computer code, developers are able to create the rules and processes that build a blockchain-based application—which makes it a target for criminals as many smart contracts are vulnerable to hacking due to poor coding.

Because it is still a quite new field, security researchers are still finding bugs in some of these codes, and these vulnerabilities make it quite easy for cyber criminals to hack into the contracts that typically handle business transactions.